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ABSTRACT 
The demand for advanced skills in data analysis spans many areas 
of science, computing, and business analytics. This paper 
discusses how non-expert users reuse workflows created by 
experts and representing complex data mining processes for text 
analytics. They include workflows for document classification, 
document clustering, and topic detection, all assembled from 
components available in well-known text analytics software 
libraries.  The workflows expose to non-experts expert-level 
knowledge on how these individual components need to be 
combined with data preparation and feature selection steps to 
make the underlying statistical learning algorithms most effective.  
The framework allows non-experts to easily experiment with 
different combinations of data analysis processes, represented as 
workflows of computations that they can easily reconfigure.  We 
report on our experiences to date on having users with limited 
data analytic knowledge and even basic programming skills to 
apply workflows to their data.  

Categories and Subject Descriptors 
C. Computer systems organization, D.2 Software engineering, 
D.2.10 Design. 
General Terms 
Design, Performance, Human Factors. 
Keywords 
Scientific workflows, text analytics, semantic workflows. 

1. INTRODUCTION 
In a world with increasingly more on-line information and with 
myriads of sensors, our ability to mine data is key to scientific 
discoveries, societal change, and business entrepreneurship. In 
science, vast amounts of data are collected in many disciplines 
and made openly available for analysis [1,2,11], whether virtual 
observatories in astronomy (http://www.sdss.org) or repositories 
of biomedical data (http://www.tcga.org). Data analytics has 
emerged as a widely desirable skill in many areas where 
discoveries are sought, from monitoring environmental 

cyberobservatories, to correlating on-line user behaviors, to 
aggregating medical records. Although foundational knowledge is 
taught in major universities and colleges, advanced data analytics 
can only be acquired through hands-on practical training.  Only 
exposure to real-world datasets allows students to learn the 
importance of preparing and cleansing the data, designing 
appropriate features, and formulating the data mining task so that 
the data reveals phenomena of interest. However, the effort 
required to implement such complex multi-step data analysis 
systems and experiment with the tradeoffs of different algorithms 
and feature choices is daunting.  For most practical domains, it 
can take weeks to months for a student to setup the basic 
infrastructure, and only those who have access to experts to point 
them to the right high-level design choices will endeavor on this 
type of learning.  As a result, acquiring practical data analytics 
skills is out of reach for many students and professionals, posing 
severe limitations to our ability as a society to take advantage of 
our vast digital data resources. 

We view workflows as a paradigm to: 1) expose non-experts to 
well-understood end-to-end data analysis processes that have 
proven successful in challenging domains and represent the state-
of-the-art, and 2) allow non-experts to easily experiment with 
different combinations of data analysis processes, represented as 
workflows of computations that they can easily reconfigure and 
that the underlying system can easily manage and execute. 

This paper describes a highly reusable family of workflows for 
text analytics, which includes workflows for document 
classification, document clustering, and topic detection.  These 
workflows capture expertise on using supervised and 
unsupervised statistical learning algorithms, as they reflect state-
of-the art methods to prepare data, extract features, down-select 
features, and train models of the data.  Our framework uses the 
Wings workflow system [8], which has two key features that 
make workflows accessible to users with limited programming 
skills: a simple dataflow structure and a simple web interface. 
This paper also reports on our experiences to date having non-
expert users apply these text analytics workflows to their data and 
extend them to suit their analytic tasks.   

Work to date on workflow reuse has focused on expert scientists 
reusing workflows from other scientists [4], and to our knowledge 
our work is the first to look at reuse of expert workflows by non-
experts.  While reuse by other expert scientists saves them time 
and effort, reuse by non-experts is an enabling matter as in 
practice they would not be able to carry out the analytic tasks 
without the help of workflows.  
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We begin motivating the value of workflows as a means to 
represent valuable expertise in data analytics, and in particular 
text analytics. We describe our approach, describing the 
workflows that we have implemented for text analytics, how they 
are represented in Wings, and how users interact with the system 
to browse and run workflows.  We then present our experiences to 
date with non-experts reusing text analytics workflows.  We 
finalize with conclusions and thoughts for future work. 

2. MOTIVATION 
Data analytics skills cannot easily be acquired from books or in a 
classroom setting. Many courses on different levels of statistics, 
machine learning and data mining are offered in most universities 
and train students on the relative merits of different algorithms 
and statistical techniques. However, in practice designing an 
appropriate end-to-end process to prepare and analyze the data 
plays a much more influential role than using a novel classifier or 
statistical model. For example, for text analytics, in many cases 
the prediction accuracy of text classifiers on one dataset can differ 
5-10% depending on how the unstructured texts are converted to 
feature vectors.  In contrast, once the data is preprocessed the 
difference between which classifier (such as support vector 
machines or Naïve Bayes) is applied on the same feature vector is 
only 0.5-5%. Moreover, state-of-the-art data analytics often 
involves multi-step methods with sophisticated statistical 
techniques such as cross-validation and combinations of 
algorithms such as ensemble methods. Such methods are 
challenging to set up and run and few users will have requisite 
experience and infrastructure to experiment with them.  Finally, 
such expertise can only be learned by experiencing the 
performance of different methods with real data, by understanding 
different data preparation strategies, and by exploring the relative 
merits of different algorithmic choices and their effect in the 
overall performance. 

In research projects and industrial practice, advanced data analytic 
skills are usually achieved by working on multiple data analytic 
task domains and being coached by experts.  This places a 
significant barrier for researchers that are interested in acquiring 
these skills but do not have access to such settings.  First, 
developing an appropriate setup for any real problem (e.g. email 
prioritization) requires a good understanding of the state-of-the art 
analytics in that domain (e.g., text analytics), placing a barrier for 
many students who do not have easy access to that expertise.  
Moreover, significant software infrastructure needs to be deployed 
in order to learn by applying and observing different techniques in 
a real problem domain, requiring significant investment which 
deters potential students from attempting to do so.  Setting up this 
infrastructure requires programming skills, making it infeasible 
for students without significant computer science background.  
Finally, the cycle to develop appropriate infrastructure in a real 
domain can be as long as months or years, making it impractical 
for students who want to acquire these skills to do it in one and 
much less in several domains. 

The use of workflows for representing and managing complex 
scientific data analysis processes has been described in 
[2,11,6,17].  Workflows represent complex applications as a 
dependency network of individual computations linked through 
control or data flow.  Workflows effectively capture valuable 
expertise, as they represent how an expert has designed 
computational steps and combined them into an end-to-end 
process.   

Our target users include students, researchers and practitioners 
who intend to use data analytics in industry or scientific research.  
A pre-requisite to use our system is to take necessary courses and 
training materials to be familiar with basic machine learning and 
statistical data analysis techniques.  The goal of our work is to 
supplement that material with practical learning experiences. 

Our goal is to significantly reduce the learning cycle since the 
students can utilize existing components to work on different 
workflows and setup experimental runs within minutes, while the 
usual cycle of implementing a process from raw input to final 
results is on the scale of months or years, even given that some 
components can be downloaded from shared sources. For 
example, in many computational biology applications, it may take 
an inexperienced student several months to implement a basic 
protein secondary structure prediction framework that consists of 
sequence analysis, feature extraction, classifiers, and 
postprocessing with decent performance. In our system, a student 
will be able to achieve this in several minutes. Our system 
provides an effective solution to lower the barriers to learning 
advanced skills for data analytics. 

Our work will also enable access to data analytics training 
experiences for students who have no computer science or 
programming background.  For example, many students in 
statistics or bioinformatics end up being limited to painstakingly 
reformatting and preparing data by hand or using only what is 
available in end-user environments such as MATLAB.  Our 
system will provide real-world datasets and an extensive list of 
already-packaged state-of-art data analysis components, such as 
feature extraction, feature selection, classifiers, unsupervised 
learning algorithms, and visualization tools. It will enable non-
programmers to experiment with this rich set of components by 
easily assembling them into end-to-end data analytic processes 
represented as workflows. 

Our work will also target researchers that have developed initial 
data mining applications and are seeking to improve the 
performance of their application.   A good example here is 
compiler optimization, where the use of data mining techniques is 
being adopted in order to rapidly customize optimizations to new 
computer architectures that come out every few months.  In 
carrying out a recent survey of this research area, we found that 
most of the work focuses on older techniques that are far from the 
state-of-the-art in data analytics [9].  Lowering the cost of 
learning data analytics skills would enable compiler researchers to 
achieve new levels of performance.  Similarly, sophisticated 
analytic skills are required to analyze the reams of data in mobile 
devices and other human-computer interfaces. 

Finally, expert-level data analytics practitioners would also be 
users of our system to learn new techniques.  Experts can read and 
be aware of the newest algorithms, but currently do not have a 
practical means to obtain hands-on experience with them because 
they require a large investment of effort.  Moreover, experts often 
reach a comfort zone with algorithms and techniques that they 
have experience with, and are reluctant to invest the effort to learn 
novel state-of-the-art methods. We envision sustaining learning as 
a long-term activity throughout a professional career, so that 
experts can keep up with research innovations in an easier, time-
efficient, and hands-on manner. 



3. WORKFLOWS FOR TEXT ANALYTICS 
IN WINGS 
We use the Wings workflow system [8] equipped with several 
expert-quality workflows that represent a powerful set of text 
analytic methods [10]. The framework includes workflows for 
tasks such as document classification, document clustering, and 
topic modeling.  These workflows are composed of workflow 
fragments that pre-process text, prepare the data, and set up the 
learning task.  The workflows are composed of more than fifty 
workflow components that we built using popular machine 
learning and text processing packages, including Weka [18], 
CLUTO [12], and MALLET [14] among others.  These packages 
have very heterogeneous implementations but the components 
encapsulate the software with interfaces described with data types 
in the workflow system to make them reusable in different 
workflows. The workflow system ensures that only the right 
components are used in workflows by checking the semantic 
constraints of the input and output types for every component. 
The system ensures that only workflows with valid combinations 
of components are executed. The framework also includes several 
widely used datasets used for comparison purposes in the text 
analytics community.  A technical overview of the framework is 
described in [10], given from a developer’s perspective.  In this 
section, we focus on the user’s perspective, illustrating the 
collection of workflows that the framework provides. 

3.1 Workflow Fragments 
The workflows are composed of workflow fragments that are 
reused across workflows. These predefined workflow fragments 
make text analytics expertise readily available to new users.  

Text Pre-Processing and Feature Generation: Analytic tasks 
usually begin with some preprocessing steps to generate the 
features of a document. The workflow fragment for feature 
generation is shown in Figure 1(a). In the first step common stop 
words (e.g., a, for, the) are removed from the data set since they 
don’t improve the learning performance. Next to the stop words 
another component also removes words that are smaller than a 
given size. This will also remove special characters from the 
dataset. Morphological variations are removed from the dataset 
with a stemmer component. The stemmer component is especially 
denoted with a dashed box because it is an example for an abstract 
component. These components have further specialized 
components and represent possible variation steps in the 
workflow. For this particular component the framework can 
choose between a Porter Stemmer and a Lovins Stemmer. The last 
step for this workflow is the term weighting that is used to 
transform the dataset into the vector space model format. Since 
this is an abstract component one can choose between various 
different implementations. Among them are term frequency-
inverse document frequency, corpus frequency or document 
frequency for instance. The generated outcome can now be used 
with different other workflows and is independent of a particular 
implementation at this stage in the workflows.  

Feature Selection: A very common step for many classification 
problems is the feature selection shown in Figure 1(b). Main 
purpose of the feature selection is to reduce the training set by 
only using the most valuable features. This will reduce the 
necessary time for training the model and can improve the results 
of the classifier in some cases. The goodness of a feature in the 
dataset is measured with the correlation score. Typical 
implementations for this step are Chi Squared, Mutual 
Information or Information Gain that can be found in [19] and are 

all implemented in the framework. The resulting score is used in a 
feature selection step to retain the most valuable features in the 
training set. The percentage of selected features is typically 
changing for every dataset respectively classifier used in the 
computational experiment.    

Another characteristic for this workflow fragment is that it uses 
heterogeneous implementations for the components. While the 
components for the computation of the correlation score take 
advantage of the capabilities of MATLAB to efficiently handle 
large matrices, the component for the feature selection uses an 
implementation written in Java.  

Training and Classification: The resulting training set after the 
feature selection can be used for the training of a model with the 
workflow shown in Figure 1(c). Both components in the workflow 
use the Weka machine learning framework. Thus, many different 
machine learning algorithms can be used to perform experiments 
with the dataset. Among them are very popular algorithms from 
the text analytic community like Support Vector Machines, Naive 
Bayes or k-Nearest Neighbor. The computed model can be stored 
in the data catalog and reused for later classifications. Since the 
training is usually a very time demanding task in the workflows, it 
is very desirable to reuse previously created models. Existing 
models are also easier to compare against each other, because the 
metadata information of the model carries provenance information 
from the used components and their configuration during the 
workflow execution. In the second step a classifier uses the 
trained model with the testing set to compute the predictions.  

A constraint in the component catalog of the framework also 
makes sure that the workflow is executed correctly. In a workflow 
that is not executed correctly one could use different machine 
learning algorithms for the modeler and the classifier components. 
In the framework however the user doesn’t have to deal with this 
potential problem, because the invalid instances are automatically 
rejected by the workflow system and is not possible to execute 
them.   

Clustering: The workflow fragment for clustering is shown in 
Figure 1(d). The Vector that results from the Feature Generation 
workflow can be used as input for clustering.  It needs to be 
formatted into the suitable format for the clustering software.  The 
result of this step is the Feature output with the transformed 
Vector. Next to this output there are additional intermediate files 
called Rows and Columns that contain the label names that are 
used to annotate the final result with the right names for the 
features and labels. The parameter for this component is used to 
specify the number of clusters to be applied on the data set. 

3.2 End-to-End Workflows 
The previously defined workflow fragments can be executed 
independently from each other. Some researchers might focus on 
some particular parts in order to optimize or improve their 
understanding of the behavior in the individual steps. A good 
starting point for novice researchers however is to use end-to-end 
workflows that are formed using the components and workflow 
fragments discussed above.  These end-to-end workflows 
represent advanced expertise in that they capture complex 
combinations of components that are known to work well in 
practice.  These workflows are pre-defined by experts and 
available as part of the workflow library.  They can be executed 
with available datasets, or adapted by adding or changing 
components. 
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Figure 1. Workflow fragments for (a) Feature generation, (b) Feature selection with correlation scoring, (c) Training a model to 
classify a test dataset, (d) Clustering of documents with label information. They are composed of common workflow components, 

for example in (a): “StopWords” removes common stop words (e.g., a, for, the) from the data set in “Words”; “SmallWords” 
removes words that are smaller than a given size determined by “Size”; “Stemmer” converts morphological variations from the 

dataset with a stemmer component; and “TermWeighting” transforms the dataset into the vector space model format.



 
Figure 2. Workflow for document classification using a testing 

and training set. 

  
 

Figure 3. Workflow for topic modeling. 
 

Document Classification: Figure 2 shows a document 
classification workflow.  It has two branches for the testing and 
training set. For the branch with the training set, the feature 
selection workflow fragment is applied. There is an additional 
step in each branch to transform the data format so it can be 
processed by the modeler and classifier which is implemented 
with the Weka toolkit. For this purpose a Vocabulary file contains 
all words of the entire dataset to make sure that every word is 
mapped to a unique number. The final steps perform the modeling 
and classification of the datasets to achieve the predictions. 
Document Clustering:  The document clustering workflow is 
similar to the document classification workflow shown in Figure 
2, except for the last steps where the modeler and classifier 
fragment that was shown in Figure 1(c) is replaced by the 
clustering workflow fragment in Figure 1(d). 

Topic Modeling: The topic modeling workflow is shown in 
Figure 3.  There are actually several workflows for topic modeling 
with small variations, for example some have stemming steps and 
some do not.   



3.3 Experimenting with Workflows 
A user would select a workflow, a dataset, and provide parameter 
values to run the workflow.  Based on the dataset, the 
configurable parameters, and the number of abstract components, 
a list of executable workflows is generated. Since abstract 
components should be specialized within a workflow procedure, 
the Wings workflow system considers all their possible 
combinations by using a brute force approach. The Wings 
semantic reasoner, a part of the workflow system, automatically 
rejects invalid combinations of components if they violate the 
constraint rules specified in the data flow. In the document 
classification (Figure 2), for instance, the vector output of 
preprocessing should be converted to Arff file format. The 
FormatArff component is utilized for this task, and it takes two 
inputs; a vector output from Feature Generation and Vocabular. 
The Vocabular is the stemmed dataset using either Porter stemmer 
or Lovins stemmer (prior to this selection, we only see the 
Abstract Stemmer component). In this case, the selection of 
Vocabular processed by Porter stemmer will never consider the 
Lovins stemmer at the previous step (where we only see the 
Abstract Stemmer component). The two inputs provided to the 
FormatArff component should be compatible with each other, so 
the system knows it need not explore the possibility of choosing 
the other stemmer. As a result, the Wings workflow system prunes 
invalid branches. Hence, it saves time on experimental setups by 
only providing a correct execution table and frees any concerns of 
mis-configuration from a user.  A detailed description of the user 
interface and the interaction dialogue is described in [Gil et al 
2010]. 

4. RELATED WORK 
In [16], prominent members of the machine learning community 
argue for the need to share software and datasets to facilitate 
experimentation and learning. There are already widely-used 
libraries such as MLC++ [13] and Weka [18]. The popularity of 
these systems demonstrates the demand for accessible machine 
learning codes.  Although Weka provides basic functionality to 
compose codes into workflows, it does not provide any facilities 
to guide non-experts in how to combine them or how to prepare 
their data or select features that are appropriate for their goals. 

Gestalt [15] is a user-centered environment for machine learning 
that is designed for programmers and guides them through 
pipelines that include data cleansing and visualization steps.  
However, it focuses only on classification tasks which are the 
simplest ones.  

A workflow approach for text analytics is used in the IBM UIMA 
system [5], but it requires manual construction of the workflow 
including the interfaces between different components. 

5. REUSE OF TEXT ANALYTICS 
WORKFLOWS BY NON-EXPERTS  
To investigate the usability of our framework, we report on two 
very different cases of reuse of our workflows.  The first is a case 
of reuse by researchers not expert in machine learning or text 
analytics, using the workflows for a project that targeted the 
analysis of a text corpus to improve a question/answering web 
site.  The second is a case of reuse by high-school students for an 
internship project to analyze twitter data. 

 
Figure 4. Overview of the question processing flow on The 

MadSci Network. 

5.1 Reuse by Other Researchers 
The Madsci Network is an Ask-A-Scientist website1.  It provides 
a human-mediated Question & Answering (Q&A) service that 
answers questions in 26 different scientific fields.  Boasting a 
store of over 40,000 questions and answers, it serves as a unique 
repository of scientific knowledge.  However, with more than 
650,000 unique visitors and only 700 scientists to answer 
questions, it is worth automating some of the processes that are 
currently done manually to handle user questions. 

5.1.1 Research Questions for Q&A Framework 
When a user first comes upon the site, they might immediately try 
to submit a question they have wrestled with for a while, as shown 
in the question process flow in Figure 4.   

One of the issues with the operation of such an immense 
knowledge base is that it is difficult to automatically determine 
whether a new question has already been answered on the 
website.  If it has not, the question is routed by the moderator to a 
scientist who is best suited to answer that query.  However, 
finding scientists that are especially appropriate for a specific 
question is equally challenging given the vast number of scientists 
actively answering questions on the site. Finally, determining the 
correct category into which a question falls is another substantial 
machine learning task associated with Q&A sites as users often 
mis-categorize their queries. Thus, the main questions associated 
with analysis of The Madsci Network corpus are: 

1. Automatic Question Answering: suggesting best 
matches from the archives for an incoming question 

2. Task Assignment/Expert Finding: finding the best-
suited scientist for incoming questions 

3. Label Assignment: finding the most appropriate 
category for incoming questions 

Concomitant with these research thrusts are several other issues, 
including dealing with short documents (e.g., the lengths of 
submitted questions,) and examining trends in the data that have 
applicability well beyond the specific corpus studied.  A 
promising new approach to help address all of these data analysis 
problems is based on topic modeling. 

Topic models [3] are a Bayesian graphical model-based approach 
to discovering hidden semantic topics in a corpus.  One of the 
most popular tools which implements Latent Dirichlet Allocation, 
and its many variations, is MALLET, which is used in the Wings 
topic modeling workflow.   

                                                                    
1 http://www.madsci.org  



Just as with other machine learning methodologies applied to a 
specific corpus, topic models require in-depth and varied 
experimentation.  Once the theoretical models have been 
established, significant experimentation is needed to determine 
model selection and parameter optimization, output analysis, and 
extensive evaluation of results for various experimental scenarios.  
This is especially important in topic modeling as no formal, 
structured approach to evaluation currently exists.  Once the initial 
analysis and baseline is established, new models can be 
implemented and compared to the baselines. 

5.1.2 Experimentation without Workflows 
Non-Workflow analyses involve writing disparate scripts and 
software and keeping track of multiple experiments separately.  
This approach requires considerable expertise and is rife with 
experimental intricacies, especially of the implementation details 
as well as experimental provenance, where the experimenters 
have to keep track of the various parameters employed for each 
set of experiments. In the specific case of The Madsci Network, 
this involved:  

• Experimentation with multiple approaches to pre-
processing 

• Learning intricacies of the MALLET software system 
• Experimenting with various parameters of MALLET 
• Evaluating the sizeable and plain text-only output of 

MALLET 
• Implementing new models within the MALLET 

framework and repeating above experiments 

The most difficult part of conducting a traditional empirical 
analysis, even for experienced researchers, is the enormous effort 
and specialized knowledge required to understand and setup the 
software and to keep track of the various approaches that were 
examined. The initial experimentation, in fact, involved two 
faculty, one postdoc, and one graduate student and required three 
months of concerted effort. Even then, the sheer administrative 
burden of evaluating and keeping track of the multitude of 
experiments proved onerous.  

Using the non-workflow based experimentation, topic modeling 
and summary statistics were readily generated; however, they did 
not include visualization of trends and evaluation.  Although it 
was possible do both, this was prohibitive due to the varied file 
formats and the sheer amount of work involved while continuing 
the initial topic modeling experimentation. In addition, some 
techniques like term weighting were not included in the initial 
experimentation which would have helped make the analysis more 
precise. These visualization steps and text processing techniques 
were available as part of the workflow framework, which made a 
difference as we describe next. 

5.1.3 Experimentation with Workflows 
In general, applying machine learning theories effectively and 
efficiently to real-world corpora requires extensive trial and error 
when dealing with the practical issues of model selection and 
optimization.  This is where the Wings workflow system made the 
analysis much simpler, quicker, and complete.  Using the Wings 
workflow system not only allowed easy specification of different 
components but also kept provenance information for each 
experiment, allowed insertion of multiple visualization and 
evaluation components, and enabled straight-forward 
customization/modification of existing experiments to include the 
incorporation of new models as they were developed.   

 
Figure 5: Topic distribution for a sample question. 

We used the Wings workflow for topic modeling shown in Figure 
3.  The various parameters associated with MALLET, as well as 
the various outputs, can all be easily specified, customized, and 
used in subsequent processing, as shown below. 

For example, we can easily take one of the MALLET outputs, the 
OutputDocTopics, which shows the distributions over topics for 
each document, and insert a Weka component to visualize it.  This 
visualization is shown in Figure 5. 

This is the plot of a single question, and its distribution over 
topics, which clearly shows the dominance of a single topic in the 
distribution.  Such plots intuitively reveal insights about the 
individual questions and about the overall dataset. 

In addition, this kind of visualization would easily allow 
comparison of the histograms of similar questions in order to 
determine the most similar questions and answers using simple 
distance measures which are inserted as components in the 
additional processing of the MALLET output.  Initially, we got 
results for that experiment that had many category labels.  Later, 
we used coarser-grained category labels for each document where 
the coarser grain categories are super-sets of the original labels. 
Table 1 shows the confusion matrix for the new categories.  The 
initial results as well as examples of workflow variations created 
can be found in the project website2.  

Table 1: Confusion matrix for coarse-grained categories 

 a  b  c  d  e  f  g 

a  49  4  19  1  3  34  2 

b  3  46  28  3  3  42  2 

c  7  23  390  34  7  41  5 

d  8  6  56  93  7  19  3 

e  2  5  11  0  9  9  2 

f  27  21  42  11  13  478  3 

g  4  4  9  2  1  8  5 

                                                                    
2 http://workflow-sharing.isi.edu/workflow-

sharing/index.php/Workflow_Reuse  
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Figure 6: a) Precision-Recall curve for 5%; b) Precision-
Recall curve for 15%; c) ROC curve for 5%; d) ROC curve 
for 15%. 

In addition to visualizing the output in various ways, it is possible 
to vary the input dataset by easily adding a component to select 
only a subset.  For instance, one experiment might specify the use 
of only 5% of the dataset in order to identify trends in the subset 
alone, as well as comparing with a larger proportion or even the 
entire dataset.  This is exactly what is seen in 6a and 6c, where we 
see the Precision-Recall and the ROC curve, respectively, for the 
comparison of a single input question to all other questions and 
answers in that dataset in an effort to analyze research questions 
#1 and #2. 

Figure 6b and Figure 6d show the same analysis for a larger 
component of the dataset (15%), also showing how the accuracy 
changes when the size of the dataset is varied. The only change 
required in the Wings framework was changing a single parameter 
on the input dataset as this is facilitated by a Reduce component to 
create datasets of varying percentages of the original size. 

It is also relatively simple to analyze how questions and answers 
cluster together, using the clustering workflow in Figure 3.  The 
results are shown in Figure 7.  We can use this workflow to show 
how documents and topics cluster; this can be used by both the 
users and the moderator.  When a new question is submitted, a 
new clustering diagram will be produced in which topics would be 
on the y-axis and documents on the x-axis; this would clearly 
show which questions/answers cluster with the correct answer (on 
the x-axis) for the user and which topics cluster together on the y-
axis for the moderator to see which topics are most relevant for 
the new question. 

The main realization was that using the Wings workflow system 
simplified the process of analysis significantly.  It not only 
allowed calculation of standard statistics but also facilitated 
plotting of document-topics to help visualize it using CLUTO, 
allowed extensions of the MALLET toolkit (e.g., the Poly-Lingual 
Topic Model, PLTM, as well as new custom models) to be 
incorporated easily, with just as trivial replication of previous 
experimentation, allowed post-processing and visualizing of 
complex text output as shown in the Precision-Recall and ROC 
curves, as well as the histogram spectra of topic distributions, 
using tools like Weka. 

 

Figure 7: Clustering output for The Madsci Network dataset. 

The web interface of the workflow system makes setting up an 
experiment very easy. The researchers could adapt the pre-
existing workflows and make modifications according to the end 
application. Wings reasons about the workflows specified and 
ensures that they contain valid combinations of components. In 
the Feature Selection workflow, for instance, the selection of a 
Vocabular dataset that was built using the Porter stemmer will 
make the system reject the Lovins Stemmer component at the 
previous step because the same stemmer should be used to process 
the corpus and to create the Vocabular input.  

Intermediate data results are accessible while executing the 
workflow, and this provides significant advantages for researchers 
and students. Therefore, they can compare which algorithm is the 
best fit to the given dataset for analysis. For example support 
vector machines (SVMs) are a very popular method for 
classification.  The framework allowed one of the students 
involved to carry out several experiments to compared SVMs to 
other machine learning algorithms. In the experiments, the SVM 
classifier made better predictions on the WebKB_test dataset and 
the MadSci Vocabular dataset than Naïve Bayes or K-Nearest 
Neighbor algorithms. The Naïve Bayes classifier indicated the 
most erroneous predictions. Even if the classifier was 100% sure 
for some instances of the trained model, those probabilities were 
still associated with the wrong prediction. Through the 
experiments, the student was able to apply the acquired academic 
knowledge to a real-world application, and helped clarify how to 
make a choice for both the Modeler and Classifier steps. In the 
end, this experience allowed the student to acquire practical skills 
in advanced text analytics. 

Finally, it was easy to extend the analysis to include alternate 
analytical methods, including replacing the topic models with 
word frequencies and repeating all of the previous 
experimentation for the new component.  

To summarize, the main advantages realized using the Workflow-
based system for these researchers were: 

• Storing provenance information for tracking 
experimental protocols and results 

• Using pre-existing components and working with a 
wide variety of pre-defined file formats 



• Allowing simple plug-and-play of complex components 
that are prohibitive from a resource or time perspective 
without workflows 

• Easy exploration of parameters for model 
selection/optimization 

• Ability to customize components and design additional 
components 

5.2 Reuse by High School Students 
We recruited three high school students with limited programming 
background to use our system over a period of a week. The 
students had taken two semesters of introduction to programming 
in the eight and ninth grades, and were entering tenth grade in the 
coming year.  After a short tutorial, they were then were asked to 
formulate useful tasks for themselves that would require running 
workflows or extending them by adding new components.  

During the five days, the students did the following tasks:  
• Became familiar with workflows as a software paradigm 
• Learned to use the system and run simple workflows to 

analyze data (e.g., compare sets of html files to see how they 
would be classified) 

• Learned to use pre-existing workflows for advanced text 
analytics (e.g., run workflows for document clustering and 
topic detection and compare their performance for different 
threshold parameters) 

• Extended existing workflows with new workflow 
components that they developed 

• Analyzed twitter data to detect topic trends by applying pre-
existing advanced text analytic workflows  

They also wrote a report describing these activities and their 
findings3. We highlight here two interesting accomplishments of 
their work. 

5.2.1 Using Workflows to Learn to Select Features 
for Learning 
The text classification workflow has a parameter “Percentage”, 
which determines how many of all the possible features should be 
used by the learning algorithm.  They wondered what was the 
right value to use.  To answer that question, they run the workflow 
using Naïve Bayes as the learning method and using different 
values of that parameter.  They reported the following 
observation: 

 “The graph demonstrates that at around 30% of 
included instances, the percentage of correctly 
classified instances levels for the data set we used.” 

The curve is different for different machine learning 
algorithms, which they were able to explore as well by selecting 
different configurations of the workflow.  This is a well-known 
phenomenon for machine learning experts, because the optimal 
number of features to use depends on the machine learning 
algorithm and the dataset at hand.  With the workflow framework, 
the students were able to learn this easily by experimenting with 
the workflows. 

                                                                    
3http://workflow-sharing.isi.edu/workflow-

sharing/index.php/Workflow_Usability 

 

Figure 6: Plot showing how the parameter that selects the 
percentage of instances used for training affects classification 
accuracy. 

 

Figure 7:  Plot of the highest ranked topics for one of the 
tweets. 

5.2.2 Using Workflows to Analyze Twitter Data 
We gave them a dataset that we extracted from the 

twitter.com site.  The dataset has more than 250,000 tweets taken 
from November 1 2009 to February 28 2010, which includes the 
date when the Haiti earthquake occurred.  They were curious 
about the most popular topics that were discussed in the dataset. 

The data from twitter was in a format that was not 
appropriate for the workflows.  Therefore, the students had to pre-
process the data, and for that they wrote three pre-processing 
components that they executed before running the workflow.  
First, the data included tweets in several languages.  To address 
this, they wrote a component that selected tweets that were only in 
English, by looking for common English words such as “the” and 
“and”.  Second, the dataset had html markup tags, which would 
result in confusing features for the machine learning algorithms.  
To address this, they created a component that finds and removes 
html tags.  Finally, the dataset was also full of strings of non-
alphabetic characters, such as URLs, and those would not be 
appropriate features.  They wrote a third component to extract 
only the words formed by alphabetic characters. 



Once the data were formatted appropriately with the new 
components that they wrote, they run the topic modeling 
workflow.  With a simple keystroke, they were unknowingly 
using state-of-the-art methods for this task, and were able to 
generate Figure 7 showing the highest ranked topics for one of the 
tweets.  Other plots could be created to show the most popular 
topics of the entire dataset. 

6. CONCLUSIONS 
The demand for advanced skills in data analytics spans many 
classic and emerging domains, including social network analysis, 
bioinformatics, cybersecurity, climate science, and business 
analytics to name a few.  We have shown in this paper a 
framework based on scientific workflows that has been used to 
capture expertise from domain experts in data mining and text 
analytics.  Our preliminary results show that the framework can 
be used by non-experts to carry out sophisticated data analysis 
tasks, even when they have very limited programming skills.  
Non-experts can reuse and extend these workflows to customize 
them for new data and new applications.  An important capability 
that is missing from our system is to create plots and 
visualizations that aggregate results from several workflow runs. 
Our users did this by hand, and it would be nice if the system had 
a notion of workflow collections and allowed users to create 
visualizations of results along selected dimensions. 

Our work is a step towards a framework that could make data 
analytics accessible to students, scientists, and professionals who 
lack the programming skills required to assemble themselves end-
to-end data analysis systems for experimentation and practical 
learning. If we succeed, the wide adoption of our approach could 
ultimately lead to broad societal impact by changing the way 
people interact with data, learn from using scientific data, and 
participate in scientific data analysis tasks. 
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